Warm-Up Similarity and Triangles

1. What does it mean for shapes to

be similar?

Sides are proportional Angles are congruent

2. Dilate the following figure, with a scale factor of 3.

A 15 B

Are the triangles similar?

$$\frac{15}{5} = \frac{12}{4} = \frac{6}{2}$$

Similarity and Triangles

Corresponding - In the same relative position

Name a pair of corresponding angles.

NYT ≈ T X YS TTR ≈ T X XS TTR ≈ T X XS An object is <u>similar</u>, if and only if the <u>corresponding sides</u> are <u>in proportion</u> and the <u>corresponding angles</u> are <u>congruent</u>.

Similar Figures					
symbol	Property				
Similarity Statement	Proportion Statement				

2 figures that have the same shape but different size				
symbol	Property			
Similarity Statement	Pro			

	Similar Figures			Similar Figures]
∆ABC ~∆DEF	similar.	Property	4	symbol	angles are co	sides are nd corresponding ngruent
AAGAA	Similarity Statement	Proportion Statement	- 1	statement Statement	Statement	$\frac{AC}{DF} = \frac{AB}{DE} = \frac{BC}{EF}$
			Γ			
∆ABC ~∆DEF	symbol	Property	ſ	Symbol	Property	
B _C E _F	AABC ~ADEF LA~LD AC~DF LC~LF AB~DE LB~LE BC~EF	Statement	C	Similarity Statement		$\frac{\overline{AC}}{\overline{DF}} = \frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}}$

Similarity and Triangles Are these shapes similar? LA \$ LD because corresponding angles are not congruent.

Are these shapes similar?

DABC & DKLM because corresponding sides are not proportional

Similarity and Triangles

LAZLM

Are these shapes similar?

Are these shapes similar?

Resportional sides $\frac{12}{6} = \frac{10}{5} = \frac{6}{3}$ 2 = 2 = 2N Congruent angle

DABC = AMNL

because all corresponding sides

are proportional and all

corresponding angles are congruent.

To show similarity we had to check that each pair of corresponding sides was proportional and that each pair of corresponding angles was congruent.

That took some WORK!

So... is there a faster way to check for similarity of triangles?

Similarity and Triangles

But before we can learn about it we There is have to talk about a few properties.

- Triangle Sum Theorem -> sum of interior angles of a
- Vertical Angles
- Reflexive Property

Vertical Angles Similarity and Triangles Li apposite pair of angles formed when two lines intersect. They are congruent

Vertical Angles in similar triangles

proportional sides

BABC~ DEDC.

All corresponding sides prop. All corresponding angles = LDCE & LBC

Similarity and Triangles

Reflexive Property

A figure is congruent to itself. Often a shared part such as an angle or a side.

Are these triangles similar?

What do we know?

LF = LB LD = LA

What can we find out?

LC=LE by +riangle sum theorem.

mKA+ mKB+mCC= 180°

85 + 45+ mac=180°

130+mcc=180

m(C=50°

Because LD and

LF are congruent to

CA and LB, LE must be congruent to LC.

AA Postulate

If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

Similarity and Triangles

Are the following triangles similar? Yes

How do you know?

AA 45QR ≈ ∠ VTU , ∠ QR S ≈ ∠TUV

V If they are, write a similarity

statement.

AQRS ~ ATUV

Are the following triangles similar?

How do you know?

AA, ∠DEA≅∠BCA ∠BAC≅∠D4E

If they are, write a similarity

statement.

DABC ~ DE

